

Evaluation of Distributed Generation within a Municipal Electrical Infrastructure

may1603.sd.ece.iastate.edu

Our Team

- Joey Dugan Team Leader
- Adam Gigstad Team Co-Communication Leader
- Marissa Koehn Team Co-Communication Leader
- Connie Maluwelmeng Team Webmaster
- Denis Kinganga Key Concept Holder
- Sid Taha Key Concept Holder

Client: City of Bloomfield Advisors: Dr. Kimber & Dr. Wang Introduction

Problem Statement

- Goal of energy independence by 2030
- Deliverables for this semester
 - Map the infrastructure
 - Simulate existing system
 - Run initial test of injected Distributed Generation (DG)

Outline

- Project Plan
 - Functional & Non-functional Requirements
 - Collecting Data
- Design
 - Mapping system
 - Modeling the system
 - Simulate DG injection
- Results
- Plan for next semester

System Specifications

Data Collection

- Site visit
 - Linesmen
 - $\circ \quad \text{Advisors}$
- Map
- Transformers
- Generators
- Load

Transformer Data:

High V: 67kV Low V: 4.16kV kVA: 5000

System Map

System Map

System Requirements

Functional Requirements

10.05 PERMISSIBLE SECONDARY VOLTAGE VARIATION:

"For 120-600 volt nominal service variations of no more than 5% above or below the standard voltage will occur."

All voltage regulation is handled by regulators at the sub-station. Try to maintain 125V as it leaves the sub.

10.06 PERMISSIBLE PRIMARY VOLTAGE VARIATION:

> "Variance of no more than 5% above or 2.5% below the standard nominal voltage"

Nonfunctional Requirements

- What Type of DG System?
- Contract Stipulations with Current Power Provider
- System Sizing and Feasible Scalability
- Possible Locations
- Financial Implications

Sizing and Scalability

Irradiance

Potential DG Locations

FIG. Locations provided by Chris Ball

Locations Overlaid Atop Existing Power Grid

System Modeling

• OpenDss

- Power distribution systems simulation tool
- Supports all frequency domains
- Intended to support DG integration
- Can be modified to meet future needs i.e DG protection

Testing

- Solar injection Expectations
 - Voltage rise on the feeders resulting in power loss reduction

```
0
```

V=IZ P = VI

 $P = I^2 Z$

Impedance stays constant, current drops, power drops

Existing System Infrastructure

Initial Simulation Results

- Acceptable voltage drop on feeders
- PV generator raises voltage
 - Data from January 2014
 - $\circ \quad \text{One feeder tested} \\$
 - Slight voltage rise between 8.00 am and 3.00 pm
 - Easily regulated at substation level
 - Not enough to stress the feeder

OpenDss Output

BloomfieldPV_test2_Mon_m2 - No					
File	Edit	Forma	at Vie	ew H	lelp
hour 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,	, t().000).000 0.0000	(sec))00,)00,)00,)00,)00,)00,)00,)00,)0000,)000,)000,)000,)0000,)0000,)000,)000,	, V1 2401 2401 2401 2401 2401 2401 2401 240	, VA , 77, 77, 77, 777, 777, 777, 777, 777,	Angle -0. -0. -0. -0. -0. -0. -0. -0. -0. -0.

Model Uncertainties

- Limited Data
- Assumptions
 - $\circ \quad \text{Balance load} \quad$
 - Uniformly distributed
 - $\circ \quad \text{Spot loads} \quad$

Plan for Next Semester

Solar PV Generation

- Cost Analysis
- Optimal Locations
- System/Upgrade Recommendations

May investigate the following:

- Energy Efficient Programs
- Install Direct Load Control
- Diesel Power Plant
- Wind Generation
- Micro-Turbines
- Battery Energy Storage
- Biodigester Generation
- Geothermal Energy

Sources

Chiong, L. N. Network losses with penetration of photovoltaic (PV) as distribution generation (DG) resource. Universiti Teknologi Malaysia, June 2012.

Electrical Load Estimation – Part Two. (n.d.). Retrieved December 9, 2015, from http://www.electrical-knowhow.com/2012/11/electrical-load-estimation-part-two.html

The NSRDB Data Viewer. National Renewable Energy Laboratory, n.d. Web. 08 Dec. 2015.

<<u>https://mapsbeta.nrel.gov/nsrdb-viewer/</u>>.

Maher, James P. *GENERAL RULES AND REGULATIONS FOR ELECTRIC SERVICE STANDARDS*. Iowa Utilities Board, 2007. Web. 1 Dec. 2015.

Appendix

Load Breakdown

Timeline

